Low-dimensional Dynamics for the Complex Ginzburg-landau Equation
نویسندگان
چکیده
A method is presented which results in low-dimensional dynamical systems for situations in which low-dimensional attractors are known to exist. The method is based on the use of the Karhunen-Loeve procedure for the determination of an optimal basis and the subsequent use of the Galerkin procedure to generate the dynamical system. The method is applied to two problems for the Ginzburg-Landau equation for which large databases have, been obtained. In each instance a dynamical system is generated which has roughly twice the number of degrees of freedom as the Hausdorff dimension of the exact case. It is also demonstrated that the approximations are robust in that they are accurate over a wide range of parameter space.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملNonequilibrium dynamics in the complex Ginzburg-Landau equation.
Results from a comprehensive analytical and numerical study of nonequilibrium dynamics in the two-dimensional complex Ginzburg-Landau equation have been presented. In particular, spiral defects have been used to characterize the domain growth law and the evolution morphology. An asymptotic analysis of the single-spiral correlation function shows a sequence of singularities-analogous to those se...
متن کاملResponse Functions of Spiral Wave Solutions of the Complex Ginzburg–Landau Equation
Dynamics of spiral waves in perturbed two-dimensional autowave media can be described asymptotically in terms of Aristotelean dynamics. We apply this general theory to the spiral waves in the Complex Ginzburg–Landau equation (CGLE). The RFs are found numerically. In this work, we study the dependence of RFs on parameters of the CGLE.
متن کاملHole-defect chaos in the one-dimensional complex Ginzburg-Landau equation.
We study the spatiotemporally chaotic dynamics of holes and defects in the one-dimensional (1D) complex Ginzburg-Landau equation (CGLE). We focus particularly on the self-disordering dynamics of holes and on the variation in defect profiles. By enforcing identical defect profiles and/or smooth plane wave backgrounds, we are able to sensitively probe the causes of the spatiotemporal chaos. We sh...
متن کامل